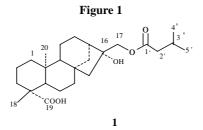
A new Kaurane Derivative from Aralia Fargesii

Yu Mei ZHANG*, Jun Shan YANG, Xu Dong XU

Institute of Medicinal Plant Development, Chinese Academy of Medical Science Peking Union Medical College, Beijing 100094

Abstract: A new *ent*-kaurane diterpene was isolated from the rhizome of *Aralia fargesii*. On the basis of chemical and spectral evidences, its structure was established as 16α -hydroxy-17-isovaleroyloxy-*ent*-kauran-19-oic acid.

Keywords: *Aralia fargesii, ent*-kaurane, 16α-hydroxy-17-isovaleroyloxy-*ent*-kauran-19-oic acid.


As part of our chemical and chemotaxonomical studies of *Aralia*, we have investigated the chemical constituents of *Aralia fargesii*, which is one of the herbal plants of *Aralia*. This communication reports the structure elucidation of a new *ent*-kaurane derivative 16 α - hydroxy-17-isovaleroyloxy-*ent*-kauran-19-oic acid I from *Aralia fargesii*. 3kg of plant *Aralia Fargesii* was extracted with petroleum ether and MeOH respectively, and the petroleum ether extract was rechromatographed resulting in the isolation of (22mg) 16 α -hydroxy-17-isovaleroyloxy-*ent*-kauran-19-oic acid.

I was obtained as white needles (CH₃OH), mp 188-190 °C, $\left[\alpha\right]_{D}^{20}$ -59 (c 0.1025, CHCl₃), with a molecular formula C₂₅H₄₀O₅, as supported by its HRFAB-MS (Found. 421.2974; Calcd. 421.2954), and the analysis of ¹H, ¹³CNMR data. Its IR spectrum showed strong absorptions at 1740 and 1701 cm⁻¹ owing to ester carbonyl and carboxyl groups respectively. The ¹HNMR spectrum (Table 1) showed two angular methyl signals (δ 0.93 and 1.22) and one doublet (J=6.5Hz) of dimethyl protons at δ 0.96 due to the isovaleroyloxy group. The ¹³CNMR spectrum (Table 2) showed the presence of 25 carbon atoms. Two tertiary methyl resonances at δ 1.22 and 0.93 and the 13 CNMR resonances at δ 183.7(C-19), 28.9 (C-18) and 15.5 (C-20) were typical of the axial C-20 and equatorial C-18 in diterpenoids with a C-19 axial carboxyl acid¹. The chemical shifts in the ¹H and ¹³CNMR spectra of I were compared with those of 16α, 17-dihydroxy-ent-kauran-19 -oic acid² which gave very similar values except those for C-17 and those for isovaleroyloxy group. These results revealed that I had the 16α, 17-dihydroxy kauran-19-oic acid skeleton. The ¹³CNMR spectra data of C-17 and isovaleroyloxy group of I were coincident with the known compound ent-16 β H, 17-isovaleroyloxy-kauran-19-oic acid¹. These indicated that I possessed the skeletal part of 16a, 17-dihydroxy-ent-kauran-19-oic acid and the sidechain part of ent-16BH, 17-isovaleroyloxy-kauran-19-oic acid. As a further supporting evidence,

Yu Mei ZNANG et al.

the EI-MS of I exhibited a significant fragment peak at m/z 305 (basic peak), it is the fragment ion of (M⁺-CH₂OCOCH₂CH (CH₃)₂). In the HMBC spectrum, the methylene signals at δ 4.20 (1H, d, J=11Hz) and δ 4.24 (1H, d, J=11Hz) were correlated to the carbon signal of ester carbonyl at δ 173.3 and suggested the isovalerate side chain must be attached to the C-17 hydrox methyl.

From these spectral data, the chemical structure of **I** was established as 16α -hydroxy-17-isovaleroyloxy-*ent*-kauran-19-oic acid.

Table 1.¹HNMR spectral data of I (in CDCl₃,TMS as internal standard, 500 MHz)

No.	Н	[No.	Н	
1	0.81	1.85	14	1.15	1.94
2	1.42	1.83	15	1.55	
3	1.03	2.13	17	4.20	4.24
5	1.04		18	1.22	
6	1.82	1.92	20	0.93	
7	1.43	1.64	2'	2.22	
9	0.99		3'	2.09	
11	1.49	1.59	4'	0.96	
12	1.46	1.57	5'	0.96	
13	2.03				

 Table 2. ¹³CNMR spectral data of I (in CDCl₃, 125MHz)

No	С	No	С	No	С
1	40.6	9	55.7	17	68.2
2	19.0	10	39.7	18	28.9
3	37.8	11	18.4	19	183.7
4	43.7	12	26.2	20	15.5
5	56.8	13	45.9	1'	173.3
6	22.0	14	37.0	2'	43.4
7	41.8	15	52.9	3'	25.8
8	44.8	16	80.2	4'	22.4
				5'	22.4

References

- 1. K.Youngho, K.Hangsub, L.Sungwoo, U.Masakazu L.Jungjoon. *Phytochem.*, **1995**, *39*, 449.
- 2. W.Yangchang, H.Yuchun, C.Fangrong, C.Mark, W.Huikang, L.Kuohsiung. J. Nat. Prod., **1996**, *59*, 635.

Received 4 March 1999